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Abstract

This paper examines the wage and job satisfaction effects of over-education and
overskilling among migrants graduating from EU-15 based universities in 2005.
Female migrants with shorter durations of domicile were found to have a higher
likelihood of overskilling. Newly arrived migrants incurred wage penalties which were
exacerbated by additional penalties resulting from overskilling in the male labour
market and overeducation in the female labour market. Established migrants were
found to enjoy wage premia, with no evidence of disproportionate wage
impacts arising as a consequence of mismatch. Female migrants were found to
have a lower probability of being job satisfied.
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Introduction
This paper contributes to the existing literature that examines the relationship between

migrant status and labour market mismatch (Piracha et al. 2012; Lindley 2009;

Messinis 2008a, 2008b; Battu and Sloane 2004). This paper adds to the debate on a

number of levels. To begin with, it considers and compares the labour market

position of migrants and natives within a group of 11 European countries using

high quality graduate cohort data. By considering the outcomes of graduates from

European universities who have stayed to work in the country of graduation

post-study, it is arguably free of many of the biases associated with many previous

studies of migrants in relation to (a) quality differences in the education of migrants, (b)

location specific human capital effects and (c) unobserved language differences. That is, it

considers the outcomes of graduates from European universities, controlling for time

since arrival, who have stayed to work in the country of graduation post-study. Although

there now exists a vast body of research on overeducation, relatively little research has

been conducted on mismatch processes and their effects in the European graduate labour

market (see Alpin et al. 1998; Dolton and Vignoles 2000; Dolton and Silles 2008;

Green and Zhu 2010 in the UK; Kler 2006; Mavromaras et al. 2010 in Australia;
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Nordin et al. 2010 in Sweden; Barone and Ortiz 2011 in eight European countries).

Furthermore, less research has considered the outcomes of migrant males and females

respectively with regard to mismatch processes.

To date, the position of migrants in the labour market has attracted considerable

attention within the literature (Lindley 2009; Kucel and Byrne 2008; Dex and Lindley

2007; Battu and Sloane 2004; Alpin et al., 1998; Blackaby et al. 1998, 1999, 2002, 2005;

Bell 1997; Duncan and Hoffman 1981; Chiswick 1980). These studies have produced

conflicting findings regarding the labour market outcomes of migrant groups. On the one

hand, a body of work has empirically demonstrated that migrants and specific ethnic

minority groups occupy an unequal and disadvantaged position in the labour market in

terms of higher unemployment rates, lower earnings and higher rates of overeducation

(Blackaby et al. 1998, 1999, 2002, 2005; Duncan and Hoffman 1981; Alpin et al. 1998;

Battu and Sloane 2004; Kucel and Byrne 2008; Messinis 2008a, 2008b; Lindley 2009,

Nielsen 2011, Joona et al. 2014). However, a number of studies have also found

that, on average, migrants perform better than natives in the labour market in

terms of both higher employment and earnings (Bell 1997; Clark and Lindley

2005). Nevertheless, within those studies reporting that migrants perform better,

clear ethnic differences exist, with non-white migrants tending to perform poorly

relative to both white natives and white migrants (Clark and Lindley 2005). Within

this literature, women and ethnic minority groups have been particularly identified

as groups that are more likely to experience mismatch. Studies have identified that

women and immigrants (particularly non-English speaking immigrants) and ethnic

minority groups are more likely to be overeducated or overskilled than males and

whites (Sicherman 1991 in the US; Groot 1996; Lindley 2009; McGuinness and

Sloane 2011 in the UK; Green et al. 2007 in Australia; McGuinness and Bennett

2007 in Northern Ireland).

Explanations for higher rates of educational mismatch among migrants tend to

centre on labour market discrimination. If migrant groups find it more difficult

to acquire a suitable job, they may well be more likely to take a job that is not

commensurate with their qualifications, resulting in higher proportions being

overeducated. With the level of educational attainment rising amongst migrant

groups as a whole, discrimination, if reflected in greater levels of mismatch and

thus lower earnings and job satisfaction, may place doubts on the importance of

human capital attainment as an avenue for escaping disadvantage (Leslie and

Drinkwater, 1999).

These effects may be more pronounced for migrant females. Gender differences

on the labour market are found along a large number of dimensions (see Wolbers 2003).

In general, women have less favourable prospects on the labour market than men

(Blossfeld and Hakim 1997). It is likely that gender processes play an additional

role with regard to job mismatches among female migrant graduates. Because of

the higher stakes associated with female employment, women may be more likely

to accept jobs outside their own occupational domain or field of study. Also, because

opportunities for career mobility are smaller for females than males, they experience a

lower probability of moving from a non-matching job to a better fitting job. Furthermore,

females are also more likely to experience constrained choices around job search and job

acceptance (Robst 2007).
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Measurement considerations

It has been argued that differentials in levels of mismatch may be observed without

necessarily attributing this to labour market discrimination (Lindley 2009). There may

be differences in the ‘quality’ of education received in terms of subjects, grades and

institutions attended (Bhattacharyya et al. 2003; Jones and Elias 2005); furthermore,

in many studies, differences in language skills are not observed. Finally, migrant

education and experience may be location specific with respect to their home

labour market, which will also impact on levels of labour market progression

within the host labour market. To date, only a small number of studies have

emphasised the differential returns to location-specific human capital, with human

capital that is acquired in the host country demonstrating higher returns (Bell 1997;

Shields and Wheatley Price 1998). With respect to mismatch, Piracha et al. (2012) report

that a history of mismatch in the country of origin is strongly correlated with subsequent

mismatch in the country of destination.

While previous studies may have restricted exploration of the labour market position

of migrant minority groups to those who have attained native qualifications (see for

example Lindley 2009), this study provides a more ready comparison of a homogenous

population, comparing like with like, by focusing on similarly aged/experienced

entrants to the graduate labour market. Furthermore, as the graduates in this study

have successfully completed third-level qualifications in the host country, we can confi-

dently assume that language difficulties are much less of a factor. The paper also ex-

tends the literature on the labour market position of migrants with respect to gender,

education and skill mismatch. Finally, this research provides more rigorous economet-

ric testing of labour market outcomes in relation to the incidence of mismatch, wages

and job satisfaction. Few studies have accounted for selectivity bias or unobserved hetero-

geneity, and while arguably, such factors are less of an issue within such a relatively

homogenous sample, it is still important that they are considered.

In terms of labour market outcomes, our primary goal is to determine the degree to

which migrants experience higher rates of job mismatch relative to natives. We are also

interested in the extent to which such exposures exacerbate existing (gender) differentials

with respect to both earnings and job satisfaction.
Data and methods
The Flexible Professional in the Knowledge Society (REFLEX) project was financed as a

Specific Targeted Research Project (STREP) of the European Union’s Sixth Framework

Programme covering 15 countries. It is limited to graduates in the 1999/2000 academic

year, who were interviewed five years later in 2005. We focus on graduates from the

EU member states of Austria, Belgium, Finland, France, Germany, Italy, the

Netherlands, Norway, Portugal, Spain and the UK, thus excluding observations from

the Czech Republic, Estonia and Japan.

To date, all studies of mismatch and immigration,/ethnicity have focused exclusively

on overeducation; however, there is an emerging strand of literature which argues that

overskilling is a much more dependable measure of mismatch (Mavromaras et al. 2010,

2012, Mavromaras and McGuinness 2013; McGuinness and Wooden 2009). Overeducation

has been criticised on the grounds that it represents a relatively imprecise measure of
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human capital mismatch, whereby education proxies individual human capital and job entry

requirements proxy the skill requirements of the job. Clearly individual human capital can

be accumulated through both formal and informal means, thus overeducation ignores skills

acquired while on-the-job. Similarly, in a world of rising educational attainment

and credentialism, job entry requirements represent an increasingly imprecise

measure of job complexity. It has also been argued that overeducated workers may

be of lower ability and that the observed pay penalty merely reflects this, suggesting that

studies of overeducation are heavily affected by unobserved individual heterogeneity bias.

It has been asserted that overskilling, which directly compares actual human capital,

whether that be acquired formally or informally or related to innate ability, with

actual job requirements overcomes all of the measurement problems associated

with overeducation and is, therefore, potentially a much more robust measure of

mismatch (McGuinness and Wooden 2009; Mavromaras et al. 2010, 2012; Mavromaras

and McGuinness 2013). Within the context of studies of immigration, the use of

skill mismatch is particularly advantageous as language abilities should be encompassed

within individual responses, thus lessening the impacts of unobserved bias within the

measure. In the data, migrant status is identified on the basis of a question on the

respondent's country of birth.

In terms of the individuals selected for this study, we restrict our sample to

employees domiciled within EU 15 countries who were in full-time study prior to

graduation. This leaves us with an effective sample of 15,005, with individual country

samples varying from 2,296 for the Netherlands to 360 in Portugal. Migrants account

for 3.31% of the sample, which equates to just under 500 effective observations

(Table 12). There exists a substantial variation in the migrant share across countries,

ranging from under 1% in Italy, Portugal and Belgium to over 9% in the UK, with the

remaining country migrant shares ranging from 1.7 to 4.6% (Table 11). It is important

to reiterate that the sample is representative of the population of host educated migrant

graduates active in the native labour market, as opposed to the population of all mi-

grants per se. Within the data individuals were defined as overeducated if they in-

dicated that a below tertiary level of education was most appropriate for the job.

Overskilling was based on the response to a question asking individuals to rate on a 1

to 5 scale the extent to which their skills and knowledge were utilised in their

work, with a response of 1 or 2 deemed consistent with overskilling (Table 13).

Some previous studies have used the reflex data to examine the issue of labour

market mismatch (Sánchez-Sánchez and McGuinness 2015; Allen et al. 2006; Verhaest

and Van der Velden 2012; McGuinness and Sloane 2011); however, none of these

provided any evidence with regards to the relationship between migration and mismatch.

An obvious advantage of our dataset is that it enables us to study the relative impacts of

both overeducation and overskilling among migrant and native male and female gradu-

ates, controlling for the effects of educational quality, location specific human capital and

language difficulties. The main drawback of the data is that it does not allow us to disag-

gregate our data in terms of ethnic background. Nevertheless, we believe that the study

makes an important contribution on the grounds of the uniqueness of the sample

and the robustness of the estimates presented. In terms of the methods adopted,

we add to the traditional analysis of this topic by including a range of checks and

controls for the influences of sample selection and unobserved heterogeneity bias.
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Given the view that relationships may vary according to gender, our models are es-

timated firstly on a pooled sample, then separately for males and females.
Results
Table 1 reports the incidence of graduate overeducation and overskilling five years

beyond graduation within our sample of countries. At between 2 and 3%, overeducation

rates were lowest in Belgium and Norway and highest in Spain, the UK and Italy, where

rates ranged from 13 to 17%. The country level distribution of overskilling was somewhat

different, with Spain and France exhibiting the highest rates and Portugal and Norway the

lowest. Nevertheless, with the exception of France and Belgium. where the rates of

overskilling substantially exceeded those for overeducation, there appears a relatively

strong relationship between the incidences of overeducation and overskilling within

countries. However, this is not to say that the same individuals are simultaneously

identified as mismatched under each measure; in fact, we found that just 49% of

overeducated graduates were also overskilled, while 43% of overskilled graduates

were also overeducated. This reinforces the view that both measures of mismatch

are likely to be very different in nature (see Mavromaras et al. 2010; McGuinness and

Sloane 2011), thus justifying their separate analysis with respect to their relationship with

immigration status.

With respect to our multivariate analysis, we begin by assessing the extent to which

migrant graduates educated within the host country are prone to educational and skills

mismatch. The data enables us to refine our definition of migrants in some important

ways: firstly, we can control for “time since arrival” as the questionnaire asks whether

the individual lived in the host country at age 16. Accordingly, 65% of our migrant

sample was designated as “established migrants”, with the balance subsequently

referred to as “new migrants”. Secondly, the data contains information on country of

origin; however, as is evident from Appendix: Table 11, the distribution is highly dis-

persed and requires some aggregation to be of any use within an econometric framework.

We subsequently group the country of origin variable into the following categories: (a) EU

15, (b) EU accession states, (c) high income countries and (d) the rest of the world. We

begin by estimating three specifications to test for the sensitivity of the estimates
Table 1 Graduate Mismatch levels in current employment by country

Overeducation Overskilling

Italy 0.13 0.11

Spain 0.17 0.15

France 0.04 0.14

Austria 0.10 0.08

Germany 0.05 0.09

Netherlands 0.07 0.09

UK 0.14 0.14

Finland 0.06 0.07

Norway 0.03 0.04

Portugal 0.06 0.03

Belgium 0.02 0.08
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to the migrant definition applied. Our models contain a range of controls related to fac-

ulty of study, years spent in higher education, field mismatch, employment history, em-

ployer characteristics and country level fixed effects. The models relate to employment

status five years after graduation, and the results for the overeducation equation are pre-

sented in Table 2.

The model reveals that an individual’s single most important determinant of

overeducation in current employment is overeducation in their first job, thus confirming

earlier research that supports the notion of overeducation as a non-transitory

phenomenon (see Mavromaras and McGuinness 2012; Rubb 2003). There was no gender

effect, which is contrary to studies in other institutional contexts (Carroll and Tani 2013

in Australia). That is, females are no more likely to be over-educated than males as in the

Australian graduate labour market. Interestingly, current overeducation was negatively

associated with initial overskilling although the marginal effects are very low. With respect

to the other variables in the model, overeducation was found to be positively correlated

with previous unemployment and job mobility and inversely related to years of HE study,

field mismatch, participation in a degree programme perceived as prestigious, supervisory

responsibilities, hours worked, employment in an R&D intensive firm and employment

in a small firm. After accounting for such effects, relative to the base case of

Germany, overeducation was higher in Italy and Austria and lower in France, the

Netherland, the UK, Norway and Belgium. Regarding the mismatch variables, crucially,

there was no evidence to suggest that graduates from a migrant background were more

likely to be overeducated, with the result holding when time since arrival and country of

origin were controlled for.

On the grounds that relationships may vary according to gender, we re-estimated the

overeducation models for males and females separately (Table 3). The overall migrant

variable and those controlling for time since arrival and country of origin were again

insignificant. The results from Tables 2 and 3 suggest that, contrary to the findings of

previous research, migrant graduates are not prone to higher risks of overeducation in

models that fully control for the impacts of location specific human capital and

language differences, suggesting that previous studies may have been prone, at least

to some degree, to individual unobserved heterogeneity bias.

The results of the overall overskilling model are reported in Table 4. The model

results are similar to those for overeducation, with overskilling in first employment again

proving to be the most important determinant of current overskilling. The incidence of

overskilling was found to be higher among males, older workers and those with a history

of unemployment, while it was inversely related to labour market experience, field

mismatch, course prestige, perceived course reputation among employers, R&D intensity,

public sector employment and having a supervisory role. With respect to country level

effects, after controlling for individual level differences, only Finland was found to

have a lower rate of overskilling relative to the base case of Germany. In contrast

to overeducation, we found that migrants were 3% more likely to be overskilled

relative to native graduates, with specification 2 indicating that the disadvantage relates

exclusively to migrants who had been domiciled in the host country at the age of 16. This

is certainly a somewhat surprising result on the grounds that this grouping is likely to

have been the most assimilated and are also likely to have undertaken second level

schooling in the host country. Finally, specification 3 shows a higher overskilling



Table 2 Probability of overeducation (probit, marginal effects)

(1) (2) (3)

VARIABLES Spec1 Spec1 Spec1

Overedjob1 0.07*** 0.07*** 0.07***

(0.004) (0.004) (0.004)

Overskilljob1 −0.01*** −0.01*** −0.01***

(0.003) (0.003) (0.003)

Male 0.00 0.00 0.00

(0.003) (0.003) (0.003)

Labour exp −0.00*** −0.00*** −0.00***

(0.000) (0.000) (0.000)

Age 0.00** 0.00** 0.00**

(0.000) (0.000) (0.000)

Years HE −0.01*** −0.01*** −0.01***

(0.002) (0.002) (0.002)

Humanities −0.00 −0.00 −0.00

(0.004) (0.004) (0.004)

Social −0.00 −0.00 −0.00

(0.004) (0.004) (0.004)

Science −0.00 −0.00 −0.00

(0.005) (0.005) (0.005)

Engineering −0.00 −0.00 −0.00

(0.005) (0.005) (0.005)

Unemploy hist 0.01*** 0.01*** 0.01***

(0.003) (0.003) (0.003)

Migrant −0.00

(0.007)

Estab migrant 0.00

(0.008)

New migrant −0.01

(0.012)

EU 15 −0.00

(0.010)

EU other 0.03

(0.023)

High income −0.05

(0.030)

Rest of world 0.00

(0.010)

Course employer 0.00 0.00 0.00

(0.003) (0.003) (0.003)

Course prestige −0.01*** −0.01*** −0.01***

(0.003) (0.003) (0.003)

Vocational course 0.00 0.00 0.00

(0.003) (0.003) (0.003)
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Table 2 Probability of overeducation (probit, marginal effects) (Continued)

Fieldmatchnow −0.09*** −0.09*** −0.09***

(0.005) (0.005) (0.005)

Fieldrelatednow −0.08*** −0.08*** −0.08***

(0.004) (0.004) (0.004)

Hours −0.00** −0.00** −0.00**

(0.000) (0.000) (0.000)

R&D Firm −0.01*** −0.01*** −0.01***

(0.003) (0.003) (0.003)

Size 50–99 −0.01*** −0.01*** −0.01***

(0.005) (0.005) (0.005)

Size 100–249 −0.01** −0.01** −0.01**

(0.005) (0.005) (0.005)

Size 250–999 −0.00 −0.00 −0.00

(0.004) (0.004) (0.004)

Size 1000+ −0.01* −0.01* −0.01*

(0.003) (0.003) (0.003)

Public sector −0.01*** −0.01*** −0.01***

(0.003) (0.003) (0.003)

N of employers 0.00* 0.00* 0.00*

(0.000) (0.000) (0.000)

Supervisor −0.02*** −0.02*** −0.02***

(0.003) (0.003) (0.003)

Italy 0.03*** 0.03*** 0.03***

(0.006) (0.006) (0.006)

Spain 0.01 0.01 0.01

(0.006) (0.006) (0.006)

France −0.04*** −0.04*** −0.04***

(0.008) (0.008) (0.008)

Austria 0.02** 0.02** 0.02***

(0.007) (0.007) (0.007)

Netherlands −0.02** −0.02** −0.02**

(0.007) (0.007) (0.007)

UK −0.02** −0.02** −0.01**

(0.007) (0.007) (0.007)

Finland −0.01 −0.01 −0.01

(0.007) (0.007) (0.007)

Norway −0.01* −0.01* −0.01*

(0.008) (0.008) (0.008)

Portugal 0.02* 0.02* 0.02*

(0.010) (0.010) (0.010)

Belgium −0.04*** −0.04*** −0.04***

(0.010) (0.010) (0.010)

Constant 0.01 0.01 0.01

(0.016) (0.016) (0.016)
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Table 2 Probability of overeducation (probit, marginal effects) (Continued)

Pseudo R2 0.394 0.394 0.395

Observations 13,342 13,342 13,342

Standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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risk among migrants from EU 15 member states. The gender specific equations (Table 5)

indicate that the observed effects of migration relate specifically to female migrants, with

those domiciled within the host country at the age of 16 experiencing a 4% increased

probability of being overskilled in employment five years following graduation

(relative to native female graduates). Given that we have, arguably, largely eliminated

many of the usual concerns related to both the nature of acquired human capital and lan-

guage competencies from our estimates, these finding raise some significant concerns

with respect to labour market access among established female migrants. As a next step,

it would be useful to assess the extent to which the findings are related to ethnic minority

status; however, as stated, this was not possible using this data.

Propensity score and quantile regression based estimates

We sought to check that our estimates of the incidence of overeducation and overskilling

were not affected by selection bias, i.e. the possibility that the observable characteristics of
Table 3 Probit model for overeducation estimated by gender (marginal effects for selected
variables)

(1) (2) (3) (4) (5) (6)

VARIABLES Male 1 Male 2 Male 3 Female 1 Female 2 Female 3

Overedjob1 0.06*** 0.06*** 0.06*** 0.07*** 0.07*** 0.07***

(0.006) (0.006) (0.006) (0.005) (0.005) (0.005)

Overskilljob1 −0.01 −0.01 −0.01 −0.01** −0.01** −0.01**

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Migrant −0.00 −0.00

(0.010) (0.008)

Estab migrant 0.00 0.00

(0.012) (0.010)

New migrant −0.01 −0.01

(0.018) (0.016)

EU 15 −0.03 0.01

(0.023) (0.012)

EU other 0.03 0.03

(0.034) (0.030)

High income −0.04 −0.06

(0.037) (0.046)

Rest of world 0.01 −0.01

(0.013) (0.013)

Pseudo R2 0.393 0.393 0.395 0.40 0.40 0.40

Observations 5251 5251 5251 8091 8091 8091

Standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1



Table 4 Probability of overskilling (probit, marginal effects)

(1) (2) (3)

VARIABLES Spec1 Spec1 Spec1

Overedjob1 −0.01 −0.01 −0.01

(0.005) (0.005) (0.005)

Overskilljob1 0.10*** 0.10*** 0.10***

(0.005) (0.005) (0.005)

Male 0.01** 0.01** 0.01**

(0.004) (0.004) (0.004)

Labour exp −0.00*** −0.00*** −0.00***

(0.000) (0.000) (0.000)

Age 0.00** 0.00** 0.00**

(0.001) (0.001) (0.001)

Years HE 0.00 0.00 0.00

(0.003) (0.003) (0.003)

Humanities −0.01 −0.01 −0.01

(0.007) (0.007) (0.007)

Social −0.00 −0.00 −0.00

(0.006) (0.006) (0.006)

Science 0.01 0.01 0.01

(0.007) (0.007) (0.007)

Engineering 0.00 0.00 0.00

(0.007) (0.007) (0.007)

Unemploy hist 0.01*** 0.01*** 0.01***

(0.004) (0.004) (0.004)

Migrant 0.03***

(0.009)

Estab migrant 0.03***

(0.011)

New migrant 0.02

(0.017)

EU 15 0.03**

(0.014)

EU other 0.01

(0.042)

High income 0.03

(0.029)

Rest of world 0.02*

(0.014)

Course employer −0.01** −0.01** −0.01**

(0.004) (0.004) (0.004)

Course prestige −0.02*** −0.02*** −0.02***

(0.004) (0.004) (0.004)
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Table 4 Probability of overskilling (probit, marginal effects) (Continued)

Vocational course −0.00 −0.00 −0.00

(0.004) (0.004) (0.004)

Fieldmatchnow −0.14*** −0.14*** −0.14***

(0.006) (0.006) (0.006)

Fieldrelatednow −0.10*** −0.10*** −0.10***

(0.005) (0.005) (0.005)

Hours −0.00* −0.00* −0.00*

(0.000) (0.000) (0.000)

R&D Firm −0.01*** −0.01*** −0.01***

(0.004) (0.004) (0.004)

Size 50 − 99 −0.02** −0.02** −0.02**

(0.008) (0.008) (0.008)

Size 100–249 0.01 0.01 0.01

(0.007) (0.007) (0.007)

Size 250–999 0.01 0.01 0.01

(0.006) (0.006) (0.006)

Size 1000+ 0.00 0.00 0.00

(0.005) (0.005) (0.005)

Public sector −0.02*** −0.02*** −0.02***

(0.004) (0.004) (0.004)

N of employers 0.00* 0.00* 0.00*

(0.001) (0.001) (0.001)

Supervisor −0.03*** −0.03*** −0.03***

(0.004) (0.004) (0.004)

Italy 0.00 0.00 0.00

(0.009) (0.009) (0.009)

Spain 0.00 0.00 0.00

(0.009) (0.009) (0.009)

France −0.00 −0.00 −0.00

(0.010) (0.010) (0.010)

Austria −0.01 −0.01 −0.01

(0.011) (0.011) (0.011)

Netherlands −0.01 −0.01 −0.01

(0.009) (0.009) (0.009)

UK −0.01 −0.01 −0.01

(0.011) (0.011) (0.011)

Finland −0.02 −0.02 −0.02

(0.010) (0.010) (0.010)

Norway −0.01 −0.01 −0.01

(0.010) (0.010) (0.010)

Portugal −0.02 −0.02 −0.02

(0.019) (0.019) (0.019)

Belgium −0.01 −0.01 −0.01

(0.011) (0.011) (0.011)
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Table 4 Probability of overskilling (probit, marginal effects) (Continued)

Constant −0.06** −0.06** −0.06**

(0.025) (0.025) (0.025)

Pseudo R2 0.27 0.27 0.27

Observations 13,342 13,342 13,342

Standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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migrants were not distributed in a non-random fashion with respect to mismatch. Failure

to account for such influences can result in naive probit models, such as those presented

in Tables 2–5, generating biased estimates. Within the existing literature linking mismatch

with migrant status, the issue of selection has been largely ignored. We conse-

quently estimate the likelihood of mismatch among migrants relative to natives

with similar observable characteristics, and thus similar probabilities of mismatch,

using propensity score matching (PSM). Due to sample size problems, it was only

possible to assess the robustness of the overall migrant coefficients for males and

females as any further disaggregation, according to either date of arrival or country

of origin, was not feasible.

We estimate our PSM models using the Nearest Neighbour with replacement

algorithm. In terms of the stage one model that describes the characteristics of

migrants, we include controls for age, years spent in higher education, field of study,
Table 5 Probit model for overskilling estimated by gender (marginal effects for selected variables)

(1) (2) (3) (4) (5) (6)

VARIABLES Male 1 Male 2 Male 3 Female 1 Female 2 Female 3

Overedjob1 −0.00 −0.00 −0.00 −0.01 −0.01 −0.01

(0.009) (0.009) (0.009) (0.006) (0.006) (0.006)

Overskilljob1 0.11*** 0.11*** 0.11*** 0.09*** 0.09*** 0.09***

(0.008) (0.008) (0.008) (0.006) (0.006) (0.006)

Migrant 0.00 0.04***

(0.018) (0.011)

Estab migrant 0.02 0.04***

(0.021) (0.013)

New migrant −0.03 0.04**

(0.031) (0.019)

EU 15 0.02 0.03**

(0.026) (0.016)

High income 0.01 0.05

(0.048) (0.035)

Rest of world −0.01 0.04**

(0.027) (0.016)

EU other 0.04

(0.044)

Pseudo R2 0.259 0.259 0.259 0.282 0.283 0.283

Observations 5251 5251 5240 8091 8091 8091

Standard errors in parentheses
*** p < 0.01, ** p < 0.05, * p < 0.1
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degree course characteristics, exposure to overeducation and overskilling in their first

jobs, unemployment history and whether the individuals current job is related to

their field of study. Unfortunately, the Reflex data does not contain any standardised

measure of degree grade, identify individual universities or information on the graduates

socio-economic background. The first stage of the PSM revealed that migrants tended

to be older, have fewer years of labour market experience, spent fewer years in

higher education and were more likely to complete a degree programme that was per-

ceived to be prestigious. However, perhaps crucially, they were not more likely to be

overeducated or overskilled in their initial employment, suggesting that they did

not have a higher exposure to the key determinant of mismatch in current employ-

ment. The results generated under the Nearest Neighbour algorithm indicate that

migrants are around 4% more likely to be overskilled with the impact more pronounced

within the female labour market. The PSM estimate corresponds closely to the key

estimates from the probit models, suggesting that, at least in relation to the incidence of

mismatch, selection bias is not an issue (Table 6).

The reliability of any propensity score matching estimate is dependent upon the

Conditional Independence Assumption (CIA) being met, i.e. that selection to the

treatment is based solely on observables within the dataset and that all variables

that simultaneously impact both the treatment and outcome variable are also observed.

Given the richness of our models, we are confident that the variables at hand sufficiently

describe migrant characteristics. Nevertheless, despite the richness of our data, it is not

possible to completely rule out the possibility that our estimates are unaffected by

one or more unobserved effects that simultaneously influence both the treatment

and outcome variables. As a final check we ran the MHBOUNDS procedure in

STATA on the overskilling estimate for all migrants to assess its robustness to

potential unobserved confounding factors that simultaneously impact the probability of

both overskilling and migrant status. We begin with the assumption of zero bias, i.e.

Γ = 1. The intuition here is that the results are robust to unobservables that posi-

tively impact both the likelihood of immigration status and an overskilling and

subsequent increase in the odds ratio of immigration (termed positive selection

bias) up to a factor of 1.15 (Γ = 1.15). Thus, while our analysis suggests that our

key overskilling estimates are not prone to selection bias, it is also clear that they

will relatively quickly become unreliable in the presence of any substantial unob-

served confounding influence.

Having established that migrants do not have higher probabilities of overeducation

but are somewhat prone to a higher risk of overskilling, we next test the hypothesis that
Table 6 Results of propensity score models (earnings)

Overeducated current job Overskilled current job

All migrant workers −0.02 0.044**

(0.02) (0.021)

Migrant males 0.000 0.042

(0.029) (0.032)

Migrant females −0.007 0.045*

(0.025) (0.027)

T-Statistics in parentheses
Standard errors in parentheses *** p < 0.01, ** p < 0.05, * p < 0.1
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graduates from migrant backgrounds incur larger pay and job satisfaction penalties

when overeducated and overskilled. Within the general mismatch literature, a general

pattern has emerged of higher pay penalties associated with overeducation relative

to overskilling, with overskilling associated with a much larger negative impact on

job satisfaction (Mavromaras et al. 2010). This has led some authors to conclude

that an aspect of the overeducation pay differential may relate to a compensating

wage differential with workers trading lower wages for other aspects of the job that

enhance individual lifestyles (McGuinness and Sloane 2011). The large impact of

overskilling on job satisfaction has led to suggestions that this represents a more

genuine form of mismatch (Mavromaras et al. 2013). It is clearly necessary to

examine the relative impacts of mismatch on both job satisfaction and wages in order to

achieve a concise picture of the extent to which workers are being constrained by the

phenomenon.

The issue of selection bias is again considered, and given that we have observed that

migrants tend to be older, have lower levels of labour market experience and are less

likely to have completed a prestigiously perceived degree programme, it seems that

sample selection bias represents a more substantial risk in the context of the wage

equation. To date, propensity score matching has been used to test the robustness of

estimates of overeducation and overskilling on earnings (Mavromaras et al. 2008;

McGuinness 2007; McGuinness and Sloane 2011). However, given that we are inter-

ested in variations of any wage/job satisfaction penalty in terms mismatch status for

migrants relative to native, propensity score matching is no longer appropriate due

to the problem of small sample size among the various treatment groups.

In addition to the problem of sample selection, the issue of unobserved heterogeneity

bias has been widely discussed within the literature both within the context of

education/skill mismatch and immigration. While we are confident that by restrict-

ing our analyses to graduates of native universities and using of skills mismatch as

a key variable we overcomes many of the usual omitted variable problems, add-

itional checks are still undertaken. It has been argued that, within the context of

graduate cohort data, where respondents tend to be very similar in terms of both their

education and labour market experience profiles, that quantile regression may provide a

solution to any outstanding missing variables problem (McGuinness and Bennett 2007).

Following the rationale of McGuinness and Bennet (2007), we argue that unobserved dif-

ferences in the human capital levels of (a) mismatched workers due to, for example, lower

ability or (b) migrants due, for example, to poor language skills, will be reflected in their

position within the wage distribution, which will reflect differences in graduates, levels of

human capital. By comparing the impacts of immigration and mismatch within

quantiles of the graduate cohort wage (human capital) distribution, we are limiting the

impacts of unobserved heterogeneity. The quantile regression model can be formally

written as follows (see Buchinsky 1994):

lnwi ¼ xiβϕ þ uϕi with Quantϕ lnwijxið Þ ¼ xiβϕ ; ð1Þ

where xi is a vector of exogenous variables. Quantϕ(lnwi|xi)denotes the ϕth conditional
quantile of w given x. The ϕthregression quantile, 0<ϕ<1, is defined as the solution to the

problem:
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The above equation is usually written as:

minβεRk
X
i

ρϕ lnwi−xiβϕ
� �

; ð3Þ

where ρΦ(e)is the check function defined as ρΦ(e) = ϕeif ε ≥ 0 or ρϕ(e) = (ϕ − 1)e if ε<0.
It should be noted that the median estimator of ϕ = 0.5 is a special case of the quantile

regression method. The method is most usefully thought of as providing a parsimonious

way of describing the wage distribution, and as such it has the potential to add signifi-

cantly to any empirical analysis should the relationship between the regressors and

the exogenous variables evolve across the conditional wage distribution. We also

again control for sample selection within this framework; we follow Buchinsky

(2001) by implementing a two stage approach, whereby step one involves estimating se-

lection models for both established and new migrants using a semi-nonparametric estima-

tor, and in step 2, we augment the quantile regressions with level and squared terms of

the inverse mills ratios derived from step 1.

From a practical perspective, to ensure that models of this nature are correctly identified,

equation 1 (the selection equation) must contain at least one variable that is absent from

equation 2 (the quantile regressions), and the selected instruments should have

some theoretical foundation (Himler 2001). In the selection model we include con-

trols for time spent abroad and cohabitation status while studying, as clearly these

will tend to vary more for migrants and will be unrelated to earnings. Generally, our se-

lected identification instruments perform well.

Table 7 presents the results from our wage equations for various quantiles of the

wage distribution. The hypothesis that the costs of mismatch are lower for native

graduates is tested using interactions between the two key migrant dummies and the

mismatch terms, which can then be compared to the mismatch level terms in the

model. Given our earlier results, we favour the specification that distinguishes migrants

in terms of their length of stay within the host country. The wage models are well

specified and generally conform to expectations. Ignoring distributional aspects of the

results for now, we found that males have higher earnings than females, and earnings

increase with labour market experience and years in higher education. Earnings

were found to increase with hours worked and were higher for those graduating

from prestigious courses, engineering degrees and individuals employed in larger

firms. Earnings declined with a previous history of unemployment and public sector

employment. With respect to the mismatch variables, the results are in line with

those reported by McGuinness and Sloane (2009), with an overeducation pay penalty in

current employment of over 20%, while overskilling is associated with a lower wage cost

of approximately 4 to 5%. Crucially, we found that newly arrived migrant graduates incur

a pay penalty, while male graduates domiciled in the host country at age 16 earned

a premium relative to native male graduates (no such effect was evident among fe-

males). With regard to the interaction terms, we found that more newly arrived

male migrants who were overskilled incurred a wage disadvantage within the low

and median ranges of the wage/human capital distribution; however, no



Table 7 Quantile wage equations: all employees

(1) (2) (3) (4) (5)

VARIABLES Q .2 Q .4 Q .5 Q .7 Q .9

Overedjob1 −0.02* −0.05*** −0.06*** −0.07*** −0.08***

(0.013) (0.010) (0.010) (0.011) (0.014)

Overskilljob1 −0.00 0.01 0.00 −0.01 −0.00

(0.012) (0.010) (0.009) (0.010) (0.013)

Overed now −0.26*** −0.27*** −0.26*** −0.22*** −0.20***

(0.018) (0.014) (0.014) (0.015) (0.019)

Overskilled now −0.05*** −0.05*** −0.04*** −0.05*** −0.04**

(0.016) (0.013) (0.012) (0.014) (0.017)

Overed*estab mig 0.11 0.06 0.13* 0.12 −0.02

(0.096) (0.076) (0.074) (0.082) (0.104)

Oversk*estab mig 0.01 0.01 −0.06 −0.06 −0.08

(0.080) (0.064) (0.062) (0.069) (0.088)

Overed*new mig 0.18 0.08 −0.03 −0.24* −0.05

(0.165) (0.132) (0.127) (0.142) (0.181)

Oversk*new mig −0.38*** −0.44*** −0.38*** −0.16 −0.12

(0.132) (0.105) (0.101) (0.113) (0.144)

Male 0.09*** 0.10*** 0.10*** 0.10*** 0.13***

(0.009) (0.007) (0.007) (0.008) (0.010)

Labour exp 0.00*** 0.00*** 0.00*** 0.00*** 0.00***

(0.000) (0.000) (0.000) (0.000) (0.000)

Age 0.00 −0.00 −0.00 −0.00 −0.00**

(0.002) (0.001) (0.001) (0.001) (0.002)

Years HE 0.05*** 0.06*** 0.06*** 0.07*** 0.09***

(0.006) (0.004) (0.004) (0.005) (0.006)

Humanities 0.01 0.02 0.02 0.01 0.01

(0.013) (0.010) (0.010) (0.011) (0.014)

Social 0.06*** 0.07*** 0.08*** 0.08*** 0.10***

(0.012) (0.010) (0.009) (0.010) (0.013)

Science 0.06*** 0.07*** 0.07*** 0.06*** 0.03*

(0.016) (0.012) (0.012) (0.013) (0.017)

Engineering 0.13*** 0.12*** 0.13*** 0.11*** 0.12***

(0.015) (0.012) (0.012) (0.013) (0.017)

Unemploy hist −0.04*** −0.07*** −0.07*** −0.07*** −0.09***

(0.009) (0.007) (0.007) (0.008) (0.010)

Estab migrant 0.39 0.44** 0.65*** 0.95*** 1.32***

(0.268) (0.214) (0.207) (0.231) (0.293)

New migrant −0.30 −1.11*** −1.33*** −1.86*** −2.01***

(0.465) (0.371) (0.358) (0.400) (0.508)

Course employer 0.03*** 0.02*** 0.02*** 0.02*** 0.03***

(0.009) (0.007) (0.007) (0.008) (0.010)
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Table 7 Quantile wage equations: all employees (Continued)

Course prestige 0.03*** 0.03*** 0.03*** 0.03*** 0.03**

(0.010) (0.008) (0.007) (0.008) (0.010)

Vocational course 0.03*** 0.02** 0.02** 0.01 0.01

(0.009) (0.007) (0.007) (0.008) (0.010)

Fieldmatchnow −0.01 0.01 0.02 0.02 0.00

(0.015) (0.012) (0.011) (0.012) (0.016)

Fieldrelatednow 0.02 0.03*** 0.03*** 0.02* −0.00

(0.013) (0.010) (0.010) (0.011) (0.014)

Hours 0.02*** 0.02*** 0.02*** 0.01*** 0.01***

(0.001) (0.000) (0.000) (0.000) (0.001)

R&D Firm 0.01 0.01** 0.01** 0.02** 0.02***

(0.008) (0.007) (0.006) (0.007) (0.009)

Size 50–99 0.09*** 0.06*** 0.05*** 0.04*** 0.02

(0.016) (0.013) (0.012) (0.014) (0.017)

Size 100–249 0.08*** 0.06*** 0.05*** 0.04*** 0.04***

(0.014) (0.011) (0.011) (0.012) (0.016)

Size 250–999 0.08*** 0.07*** 0.07*** 0.06*** 0.08***

(0.013) (0.010) (0.010) (0.011) (0.014)

Size 1000+ 0.14*** 0.13*** 0.12*** 0.11*** 0.12***

(0.010) (0.008) (0.008) (0.009) (0.011)

Public sector −0.06*** −0.05*** −0.04*** −0.04*** −0.04***

(0.009) (0.007) (0.007) (0.008) (0.010)

N of employers −0.01*** −0.00** −0.00*** −0.00 −0.00

(0.002) (0.002) (0.002) (0.002) (0.002)

Supervisor 0.06*** 0.06*** 0.06*** 0.07*** 0.08***

(0.009) (0.007) (0.007) (0.008) (0.010)

Italy −0.70*** −0.65*** −0.63*** −0.59*** −0.51***

(0.021) (0.017) (0.016) (0.018) (0.023)

Spain −0.76*** −0.71*** −0.68*** −0.62*** −0.54***

(0.019) (0.015) (0.015) (0.016) (0.021)

France −0.31*** −0.30*** −0.29*** −0.28*** −0.30***

(0.022) (0.018) (0.017) (0.019) (0.024)

Austria −0.26*** −0.26*** −0.26*** −0.25*** −0.20***

(0.022) (0.018) (0.017) (0.019) (0.024)

Netherlands −0.13*** −0.14*** −0.16*** −0.17*** −0.21***

(0.019) (0.015) (0.015) (0.017) (0.021)

UK −0.17*** −0.12*** −0.09*** −0.02 0.07***

(0.023) (0.019) (0.018) (0.020) (0.026)

Finland −0.15*** −0.19*** −0.19*** −0.20*** −0.23***

(0.020) (0.016) (0.015) (0.017) (0.022)

Norway 0.14*** 0.10*** 0.09*** 0.07*** 0.08***

(0.020) (0.016) (0.015) (0.017) (0.021)
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Table 7 Quantile wage equations: all employees (Continued)

Portugal −0.93*** −0.91*** −0.87*** −0.83*** −0.77***

(0.031) (0.025) (0.024) (0.027) (0.034)

Belgium −0.16*** −0.16*** −0.17*** −0.19*** −0.21***

(0.023) (0.018) (0.018) (0.020) (0.025)

Oldmills −0.11 0.01 −0.13 −0.35* −0.21

(0.220) (0.175) (0.169) (0.189) (0.240)

Oldmills2 0.24* 0.43*** 0.42*** 0.41*** 0.88***

(0.135) (0.108) (0.104) (0.116) (0.148)

Newmills −0.70* 0.12 0.33 0.77** 0.48

(0.400) (0.319) (0.308) (0.344) (0.436)

Newmills2 −0.95*** −0.80*** −0.79*** −0.80*** −1.32***

(0.316) (0.252) (0.243) (0.272) (0.345)

Constant 6.30*** 7.25*** 7.45*** 8.01*** 8.19***

(0.435) (0.347) (0.335) (0.374) (0.475)

Pseudo R2 0.407 0.394 0.381 0.340 0.278

Observations 12,622 12,622 12,622 12,622 12,622

Standard errors in parentheses
***p < 0.01, **p < 0.05, *p < 0.1
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differential aspects were observed with regard to either migrants with longer

domicile or overeducation. The selection terms indicate that newly arrived (established)

migrants, a priori, have lower (higher) than expected average earnings by virtue of their

observable human capital characteristics.

Regarding the distributional aspects of the results, and assuming that an individual’s

position in the wage distribution reflects their productivity potential, the model

suggests that the disproportional wage penalty associated with overskilling incurred

by newly arrived migrants is restricted to those with low to median levels of

human capital. Newly arrived migrants with above average levels of human capital

incur no additional penalty as a consequence of becoming mismatched. With

respect to the distributional spread of the remaining covariates in the model, while

most impacts are relatively stable throughout the distribution, some notable patterns

are evident. For instance, the return to vocational programmes and field related

employment is only significant within the lower to median portions of the wage

distribution.

Disaggregating our models by gender, some substantial differences become

apparent. We find that within the male distribution (Table 8), the premium to

established migrants is positive and rising throughout the wage/human capital

distribution, while for newly arrived migrants it is negative only in the upper

regions of the wage/human capital distributions. Within the female model, the

wage penalty for newly arrived migrants is relatively persistent throughout, while

a pay premium is only evident for long-term migrants at the very top of the

wage/human capital distribution. Regarding the migrant/mismatch interactions,

the results indicate that newly arrived male migrants incur a higher pay penalty

from overskilling relative to natives. Within the female distribution (Table 9),

relative to mismatched natives, newly arrived migrants who are overeducated



Table 8 Quantile wage equations (selected coefficients): males

(1) (2) (3) (4) (5)

VARIABLES Q .2 Q .4 Q .5 Q .7 Q .0

Overedjob1 −0.06*** −0.08*** −0.05*** −0.08*** −0.09***

(0.020) (0.018) (0.016) (0.019) (0.024)

Overskilljob1 −0.00 0.00 −0.00 −0.02 −0.02

(0.017) (0.015) (0.014) (0.016) (0.021)

Overed now −0.26*** −0.24*** −0.23*** −0.18*** −0.20***

(0.028) (0.024) (0.022) (0.026) (0.033)

Overskilled now −0.02 −0.05** −0.02 −0.03 −0.02

(0.023) (0.020) (0.018) (0.021) (0.027)

Overed*estab mig 0.04 −0.11 −0.10 0.03 0.28

(0.164) (0.142) (0.128) (0.154) (0.196)

Oversk*estab mig 0.03 −0.09 −0.13 −0.11 −0.43***

(0.134) (0.116) (0.104) (0.126) (0.160)

Overed*new mig 0.04 −0.00 −0.17 0.08 −0.08

(0.218) (0.189) (0.170) (0.205) (0.260)

Oversk*new mig −0.74*** −0.45** −0.53*** −0.84*** −0.31

(0.218) (0.189) (0.169) (0.205) (0.260)

Estab migrant 0.66* 0.96*** 0.82*** 1.00*** 1.31***

(0.359) (0.311) (0.279) (0.337) (0.427)

New migrant −0.08 −0.62 −1.13** −0.66 −1.93**

(0.679) (0.589) (0.528) (0.638) (0.809)

Oldmills −4.84 −10.87** −9.09** −7.44 −8.94

(6.260) (5.090) (4.501) (5.415) (7.528)

Oldmills2 0.22 0.28* 0.31** 0.38** 0.69***

(0.170) (0.147) (0.132) (0.160) (0.203)

Newmills −1.10* −0.50 0.26 −0.65 0.94

(0.610) (0.529) (0.474) (0.573) (0.727)

Newmills2 −1.19** −1.02** −0.65* −1.34*** −0.75

(0.463) (0.401) (0.360) (0.435) (0.552)

Pseudo R2 0.399 0.381 0.368 0.334 0.267

Observations 5018 5018 5018 5018 5018

Standard errors in parentheses
***p < 0.01, **p < 0.05, *p < 0.1
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(overskilled) and located at the bottom (top) of the wage/human capital distribution incur

larger pay penalties.
Job Satisfaction

With respect to job satisfaction, respondents were asked to rate their level of satisfac-

tion with their current work on a scale from 1 to 5, where 1 was very dissatisfied and 5

very satisfied; we classify individuals responding 4 or 5 to this question as being job

satisfied. The model specification approach is similar to that adopted for the wage

equations; however, as the dependant variable is binary in nature, this rules out the

use of quantile regression as a control for unobserved heterogeneity (Table 10).



Table 9 Quantile wage equations (selected coefficients): females

(1) (2) (3) (4) (5)

VARIABLES Q .2 Q .4 Q .5 Q .7 Q .0

Overedjob1 −0.02 −0.05*** −0.05*** −0.08*** −0.08***

(0.017) (0.013) (0.013) (0.014) (0.017)

Overskilljob1 0.01 0.01 0.01 −0.00 0.01

(0.016) (0.013) (0.013) (0.013) (0.017)

Overed now −0.25*** −0.27*** −0.25*** −0.23*** −0.19***

(0.023) (0.018) (0.018) (0.018) (0.024)

Overskilled now −0.07*** −0.05*** −0.07*** −0.06*** −0.07***

(0.022) (0.017) (0.017) (0.017) (0.022)

Overed*estab mig 0.13 0.07 0.11 0.11 −0.04

(0.118) (0.093) (0.093) (0.096) (0.122)

Oversk*estab mig 0.05 0.05 −0.01 −0.01 −0.07

(0.101) (0.079) (0.079) (0.081) (0.103)

Overed*new mig 0.21 −0.26 −0.26 −0.47** −0.55**

(0.245) (0.191) (0.193) (0.197) (0.251)

Oversk*new mig −0.44** 0.01 −0.15 −0.01 −0.10

(0.172) (0.135) (0.135) (0.139) (0.176)

Estab migrant 0.18 −0.11 −0.02 0.48 1.30***

(0.431) (0.337) (0.340) (0.348) (0.443)

New migrant −0.61 −1.29** −1.28** −2.03*** −2.57***

(0.642) (0.502) (0.505) (0.518) (0.658)

Oldmills −0.05 0.43 0.37 0.01 −0.07

(0.337) (0.264) (0.266) (0.272) (0.346)

Oldmills2 0.15 0.45** 0.44** 0.44** 1.03***

(0.235) (0.184) (0.185) (0.190) (0.241)

Newmills −0.07 0.48 0.52 0.98** 0.33

(0.523) (0.409) (0.412) (0.422) (0.536)

Newmills2 −0.57 −0.60* −0.57* −0.70** −1.99***

(0.435) (0.340) (0.343) (0.351) (0.446)

Pseudo R2 0.402 0.372 0.353 0.306 0.253

Observations 7604 7604 7604 7604 7604

Standard errors in parentheses
***p < 0.01, **p < 0.05, *p < 0.1
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Furthermore, the estimation of a treatment model cannot be easily accommodated,

with sample size restrictions again ruling out the possibility of using PSM in terms

of both immigration and mismatch status. In order to account, at least to some ex-

tent, for the influences of selection, we estimate an augmented regression, within

which the individual predicted probability of each migrant status is included in the

model as an additional covariate (see Card and De La Rica 2006). In our initial

specification we find job satisfaction to be positively related to studying in the area

of education/humanities, undertaking a course perceived to have a good reputation

among employers, that is prestigious and vocational in nature, being employed in a

job related to ones field of study, employed in an R&D intensive firm and working



Table 10 Probability of job satisfaction (probit, marginal effects)

(1) (2) (3) (4) (5)

VARIABLES Spec1 Spec2 Spec3 Male Female

Overedjob1 −0.00 −0.00 −0.00 −0.01 −0.00

(0.014) (0.014) (0.014) (0.023) (0.017)

Overskilljob1 −0.02* −0.02* −0.02 −0.02 −0.02

(0.013) (0.013) (0.013) (0.020) (0.017)

Overed now −0.17*** −0.17*** −0.18*** −0.18*** −0.18***

(0.018) (0.018) (0.018) (0.032) (0.023)

Overskilled now −0.28*** −0.28*** −0.28*** −0.28*** −0.27***

(0.016) (0.016) (0.017) (0.026) (0.022)

overed*Estab migrant 0.12 0.31 0.06

(0.098) (0.193) (0.117)

overskill*Estab migrant −0.01 −0.11 0.03

(0.085) (0.157) (0.101)

Overed*new migrant 0.01 −0.06 0.02

(0.205) (0.291) (0.284)

Oversk*new migrant −0.15 −0.04

(0.157) (0.182)

Male −0.02* −0.02* −0.01

(0.009) (0.009) (0.010)

Labour exp 0.00 0.00 0.00* 0.00** 0.00

(0.000) (0.000) (0.000) (0.001) (0.001)

Age −0.00*** −0.00*** −0.01*** −0.01*** −0.00*

(0.001) (0.001) (0.002) (0.003) (0.002)

Years HE −0.01** −0.01** −0.01** 0.00 −0.02***

(0.005) (0.005) (0.005) (0.009) (0.007)

Humanities 0.05*** 0.05*** 0.05*** 0.05* 0.05***

(0.014) (0.014) (0.015) (0.030) (0.017)

Social 0.00 0.00 0.01 0.01 0.01

(0.013) (0.013) (0.013) (0.024) (0.016)

Science 0.02 0.02 0.02 0.03 0.02

(0.017) (0.017) (0.017) (0.027) (0.022)

Engineering −0.00 −0.00 −0.00 0.01 −0.02

(0.016) (0.016) (0.016) (0.024) (0.024)

Unemploy hist −0.03*** −0.03*** −0.03*** −0.03* −0.03**

(0.010) (0.010) (0.010) (0.016) (0.013)

Migrant −0.07***

(0.023)

Estab migrant −0.04 −0.05* 0.03 −0.10**

(0.028) (0.031) (0.054) (0.039)

New migrant −0.13*** −0.12*** −0.09 −0.14***

(0.039) (0.041) (0.068) (0.051)
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Table 10 Probability of job satisfaction (probit, marginal effects) (Continued)

Course employer 0.04*** 0.04*** 0.04*** 0.05*** 0.03***

(0.009) (0.009) (0.009) (0.015) (0.012)

Course prestige 0.04*** 0.03*** 0.03*** 0.04*** 0.02

(0.010) (0.010) (0.010) (0.016) (0.014)

Vocational course 0.03*** 0.03*** 0.03*** 0.03** 0.03**

(0.010) (0.010) (0.010) (0.015) (0.013)

Fieldmatchnow 0.06*** 0.06*** 0.05*** 0.04* 0.06***

(0.015) (0.015) (0.015) (0.025) (0.020)

Fieldrelatednow 0.01 0.01 0.01 0.00 0.01

(0.014) (0.014) (0.014) (0.022) (0.017)

Hours 0.00 0.00 0.00 0.00 0.00

(0.001) (0.001) (0.001) (0.001) (0.001)

R&D Firm 0.11*** 0.11*** 0.11*** 0.13*** 0.11***

(0.009) (0.009) (0.009) (0.014) (0.012)

Size 50-99 −0.01 −0.01 −0.01 0.01 −0.03

(0.017) (0.017) (0.017) (0.029) (0.022)

Size 100–249 −0.02 −0.02 −0.02 −0.01 −0.03

(0.015) (0.015) (0.016) (0.027) (0.020)

Size 250–999 −0.02* −0.02* −0.02* −0.02 −0.03

(0.014) (0.014) (0.014) (0.023) (0.017)

Size 1000+ 0.00 0.00 −0.00 0.00 −0.01

(0.011) (0.011) (0.011) (0.018) (0.015)

Public sector 0.09*** 0.09*** 0.09*** 0.09*** 0.10***

(0.010) (0.010) (0.010) (0.018) (0.013)

N of employers 0.00 0.00 −0.00 0.00 −0.00

(0.002) (0.002) (0.002) (0.004) (0.003)

Supervisor 0.02*** 0.02*** 0.02** 0.04*** 0.01

(0.009) (0.009) (0.009) (0.015) (0.012)

Italy −0.13*** −0.13*** −0.11*** −0.09** −0.11***

(0.021) (0.021) (0.029) (0.043) (0.040)

Spain −0.05*** −0.05*** −0.04 −0.03 −0.04

(0.020) (0.020) (0.024) (0.036) (0.033)

France −0.03 −0.03 −0.02 −0.01 −0.02

(0.024) (0.024) (0.025) (0.040) (0.034)

Austria 0.03 0.04 0.04 0.05 0.02

(0.024) (0.024) (0.024) (0.035) (0.035)

Netherlands −0.07*** −0.07*** −0.07*** −0.08** −0.07**

(0.021) (0.021) (0.021) (0.031) (0.029)

UK −0.09*** −0.09*** −0.11*** −0.14** −0.12**

(0.025) (0.025) (0.037) (0.059) (0.048)

Finland −0.11*** −0.11*** −0.09*** −0.07* −0.10***

(0.021) (0.021) (0.024) (0.037) (0.034)
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Table 10 Probability of job satisfaction (probit, marginal effects) (Continued)

Norway −0.06*** −0.06*** −0.06*** −0.03 −0.08***

(0.021) (0.021) (0.021) (0.031) (0.030)

Portugal −0.16*** −0.16*** −0.15*** −0.14** −0.14***

(0.033) (0.033) (0.036) (0.059) (0.047)

Belgium −0.04 −0.04 −0.02 −0.03 −0.01

(0.024) (0.024) (0.028) (0.041) (0.039)

Scores 0.50 1.44* 0.35

(0.486) (0.824) (0.621)

Constant 0.26*** 0.25*** 0.26*** 0.20** 0.28***

(0.057) (0.057) (0.057) (0.101) (0.070)

Pseudo R2 0.092 0.092 0.092 0.095 0.093

Observations 13,342 13,342 13,342 5246 8091

Standard errors in parentheses
***p < 0.01, **p < 0.05, *p < 0.1
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in the public sector. Job satisfaction was inversely related to age, years spent in

higher education and having experienced a previous spell of unemployment. We found

that being overeducated in current employment reduced the likelihood of job satisfaction

by almost 20%, with the effect considerably larger for overskilling at approximately 30%.

Crucially, we found that migrants were 7% less likely to be job satisfied, with this effect

almost exclusively driven by a 14% lower probability of job satisfaction among more

recent migrants (Specification 2). When we introduce our interaction terms, we do not

find that mismatch status among migrant workers exacerbates the already substantial

effects of either overeducation or overskilling (Specification 3).

When we estimate the models separately by gender (specifications 4 and 5), we found

no evidence of lower job satisfaction among male migrants, and, in fact, established

overeducated migrants exhibited a positive interaction effect, which more or less eliminated

the level effect for overeducation, suggesting that such migrants do not have lower job

satisfaction levels relative to matched workers. It may well be that such workers are being

compensating for lower earnings associated with overeducation by other positive job

attributes, such as increased security and/or a greater work-life balance. The situation is

very different for females, with those domiciled (not domiciled) in the host country at aged

16 found to have a ten (fifteen) per cent lower likelihood of being job satisfied relative to

native graduates. While these effects were found not to be exacerbated by the presence of

either form of mismatch, they represent important findings in their own right and certainly

provide grounds for further research.
Summary and conclusions
This paper examines the extent to which migrant graduates have a higher expos-

ure to educational and skill mismatch and the degree to which the previously

well documented negative impacts of mismatch on earnings and job satisfaction

were heightened as a consequence of migrant status. Contrary to previous re-

search, we found little evidence to suggest that migrants had a higher exposure

to overeducation. However, female migrants domiciled in the host country at age
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16 were found to have a higher exposure to overskilling relative to their native

counterparts. With respect to earnings, the research showed that more newly

arrived migrants incurred wage penalties which were exacerbated by higher levels of

penalisation resulting from overskilling in the male labour market and overeducation in

the female labour market. Established migrants were found to enjoy wage premia,

particularly within the male labour market, with no evidence of disproportionate

wage impacts arising as a consequence of mismatch. In terms of job satisfaction,

while there was no evidence to suggest that the negative effects of mismatch were

made worse by migrant status, we found that female migrants, particularly newly

arrived, had a much lower likelihood of being satisfied in their jobs relative to

their native counterparts.

The research presented here is unique in terms of its robustness given that it is free

from many of the biases usually associated with studies of migrant workers within the

labour market. In addition, the integrity of the results was also ensured with additional

checks for the effects of both sample selection bias and unobserved heterogeneity.
Endnotes
1Gender effects have not been found in other studies of mismatch (Battu et al. 2000;

McGoldrick and Robst 1996 in the US), and Wolbers (2003), in his identification of job

mismatch among European school leavers, found that male school leavers more often

have a job mismatch than their female counterparts.
2for exceptions see Blackaby et al., 2002
3Where 1 was ‘not at all’ and 5 to ‘a very high extent’
4A question on ethnicity was asked for the UK portion of the sample alone.
5In this instance host country refers to the country within which the survey is

conducted.
6Australia, Canada, US, Switzerland and New Zealand.
7As measured by the number of previous employers. This finding supports the view

that increased mobility levels among mismatched workers often result in the individual

moving from one state of mismatch to another (McGuinness 2003, McGuinness &

Wooden 2009).
8Who report that females are more likely to be over-educated than males in the Aus-

tralian graduate labour market.
9For the purposes of brevity, we report only the key coefficients. Full results are avail-

able from the authors on request.
10For the purposes of brevity, we report only the key coefficients. Full results are

available from the authors on request.
11Results available from the authors.
12Results available from the authors.
13The models are fitting through the semi-nonparametric estimators of Gallant &

Nychka (1987) using the snp procedure in Stata.
14For the purposes of brevity, we report only the key coefficients. Full results are

available from the authors on request.
15For the purposes of brevity, we report only the key coefficients. Full results are

available from the authors on request.
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Data appendix
Table 11 Distribution of migrant population by country

Country of birth of respondent Freq. Percent

Germany 49 9.88

France 24 4.84

Greece 21 4.23

Suriname 21 4.23

Sweden 21 4.23

Italy 19 3.83

United States 19 3.83

Ireland 18 3.63

Switzerland 18 3.63

Morocco 14 2.82

United Kingdom 13 2.62

Belgium 12 2.42

India 11 2.22

Poland 11 2.22

Venezuela 11 2.22

Turkey 10 2.02

Iran 9 1.81

Korea, south 9 1.81

Denmark 8 1.61

Netherlands 8 1.61

Russia 8 1.61

Vietnam 8 1.61

Netherlands antilles 7 1.41

Romania 7 1.41

South Africa 6 1.21

Canada 5 1.01

Israel 5 1.01

Australia 4 0.81

China 4 0.81

Hong Kong 4 0.81

Iceland 4 0.81

Spain 4 0.81

Bosnia and Herzegovina 3 0.6

Finland 3 0.6

Gibraltar 3 0.6

Hungary 3 0.6

Japan 3 0.6

Kenya 3 0.6

Luxembourg 3 0.6

Mauritius 3 0.6

Tunisia 3 0.6

Andorra 2 0.4

Argentina 2 0.4



Table 11 Distribution of migrant population by country (Continued)

Bangladesh 2 0.4

Brazil 2 0.4

Cote d ivoire 2 0.4

Croatia 2 0.4

Cyprus 2 0.4

Estonia 2 0.4

Ghana 2 0.4

Latvia 2 0.4

Monaco 2 0.4

Nepal 2 0.4

New Zealand 2 0.4

Nigeria 2 0.4

Philippines 2 0.4

Portugal 2 0.4

Singapore 2 0.4

Slovakia 2 0.4

Ukraine 2 0.4

united Arab emirates 2 0.4

Zambia 2 0.4

Afghanistan 1 0.2

Aruba 1 0.2

Austria 1 0.2

Belize 1 0.2

Bermuda 1 0.2

Bolivia 1 0.2

Bulgaria 1 0.2

Cambodia 1 0.2

cape Verde 1 0.2

Colombia 1 0.2

Congo, democratic republic of the 1 0.2

Czech republic 1 0.2

Eritrea 1 0.2

French Guiana 1 0.2

Georgia 1 0.2

Honduras 1 0.2

Indonesia 1 0.2

Iraq 1 0.2

Jersey 1 0.2

Kazakhstan 1 0.2

Kuwait 1 0.2

Lebanon 1 0.2

Madagascar 1 0.2

Malaysia 1 0.2

Mauritania 1 0.2

Mexico 1 0.2
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Table 11 Distribution of migrant population by country (Continued)

Norway 1 0.2

Oman 1 0.2

Pakistan 1 0.2

Peru 1 0.2

Slovenia 1 0.2

Sudan 1 0.2

Thailand 1 0.2

Uganda 1 0.2

Western Sahara 1 0.2

496 99.83

Table 12 Summary statistics

Variable Obs Mean Std. Dev.

Overedjob1 15,005 0.17 0.38

Overskillj ~ 1 15,005 0.19 0.39

Male 15,005 0.38 0.49

Labour exp 13,991 52.75 13.87

Age 14,543 30.08 3.85

Humanities 15,005 0.20 0.40

Social 15,005 0.30 0.46

Science 15,005 0.12 0.32

Engineering 15,005 0.16 0.37

Unemploy hist 15,005 0.36 0.48

Migrant 15,005 0.03 0.18

Course employer 15,005 0.40 0.49

Course prestige 15,005 0.35 0.48

Vocational course 15,005 0.40 0.49

Fieldmatch ~ w 15,005 0.30 0.46

Fieldrelat ~ w 15,005 0.54 0.50

Hours 14,888 36.39 8.01

R&D Firm 15,005 0.40 0.49

Size 50–99 15,005 0.08 0.27

Size 100–249 15,005 0.10 0.30

Size 250–999 15,005 0.15 0.35

Size 1000+ 15,005 0.37 0.48

Public sector 15,005 0.43 0.50

N of employers 14,439 2.34 2.22

Supervisor 15,005 0.32 0.47

Italy 15,005 0.10 0.30

Spain 15,005 0.17 0.37
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Table 12 Summary statistics (Continued)

France 15,005 0.07 0.26

Austria 15,005 0.06 0.23

Netherlands 15,005 0.15 0.36

UK 15,005 0.08 0.26

Finland 15,005 0.10 0.30

Norway 15,005 0.11 0.31

Portugal 15,005 0.02 0.15

Belgium 15,005 0.07 0.25

Germany 15,005 0.07 0.26

Table 13 Variable definitions

Lwage: Gross monthly earnings in main employment logged.

Overednow: Dummy variable takes value 1 if overeducated in current job andzero otherwise

Overedjob1: Dummy variable takes value 1 if overeducated in first job and zero otherwise

Overskillnow: Dummy variable takes value 1 if overskilled in current job and zero otherwise

Overskilljob1: Dummy variable takes value 1 if overskilled in first job and zero otherwise

Male: Dummy variable takes value 1 if Male and zero otherwise

Labour exp Number of months employed since graduation

Age: Age in years

Years HE: Years spent in Higher Education

Humanities: Dummy variable takes value 1 if main field of study was Humanities and zero otherwise

Social: Dummy variable takes value 1 if main field of study was Social Science and zero otherwise

Science: Dummy variable takes value 1 if main field of study was Science and zero otherwise

Engineering: Dummy variable takes value 1 if main field of study was Engineering and zero otherwise

Supervisor: Dummy variable takes value 1 if supervised staff members and zero otherwise

Fieldmatchnow: Dummy variable takes value 1 if current job matched exclusively to field of study and zero
otherwise

Fieldrelatednow: Dummy variable takes value 1 if current job matched on own or a related field of study
and zero otherwise

Course
employer:

Dummy variable takes value 1 if employers were familiar with course and zero otherwise

Course prestige: Dummy variable takes value 1 if course was academically prestigious and zero otherwise

Vocational
course:

Dummy variable takes value 1 if course was vocationally and zero otherwise

Hours: Regular contract hours per week

R&Dfirm: Dummy variable takes value 1 if employed in a research intensive firm and zero otherwise

Size 50–99: Dummy variable takes value 1 if employed in a firm with 50 to 99 workers and zero otherwise

Size 100–249: Dummy variable takes value 1 if employed in a firm with 100 to 249 workers and zero otherwise

Size 250–999: Dummy variable takes value 1 if employed in a firm with 250 to 999 workers and zero otherwise

Size 1000+: Dummy variable takes value 1 if employed in a firm with over 1000 workers and zero otherwise

Public sector: Dummy variable takes value 1 if employed in a public sector organisation and zero otherwise

N of employers: Number of employers since graduation
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