From: Where is the grass greener? A micro-founded model of migration with application to Guangdong
Description of key variables | |
---|---|
Wu | $w{u}_{\mathit{\text{it}}}=\frac{{\text{average wage index in top three units}}_{i,t}}{{\text{CPI index}}_{i,t}}$ |
where, average wage index in top three units_{ i,t }= | |
$\frac{{\text{average wage in top three units}}_{i,t}}{{\text{average wage in top three units}}_{i,t=0}}$ | |
and, ${\text{CPI index}}_{i,t}\text{=}\frac{{\text{CPI}}_{i,t}}{{\text{CPI}}_{i,t=0}}$ | |
$\overline{{\mathit{\text{wu}}}_{i}}=\sum _{t=0}^{9}{\mathit{\text{wu}}}_{i,t}\phantom{\rule{1em}{0ex}}(\ast )$ | |
i = 1…18,t = 0…9 | |
wr | $w{r}_{i,t}=\frac{{\text{average gross rural income index}}_{i,t}}{{\text{CPI index}}_{i,t}}$ |
where, average gross rural income _{ i,t }= | |
$\frac{{\text{gross rural primary industry output}}_{i,t}}{\text{rural primary industry labor force}}$ | |
and, average gross rural income index_{ i,t }= | |
$\frac{{\text{average gross rural income}}_{i,t}}{{\text{average gross rural income}}_{i,t=0}}$ | |
and, ${\text{CPI index}}_{i,t}\text{=}\frac{{\text{CPI}}_{i,t}}{{\text{CPI}}_{i,t=0}}$ | |
$\overline{{\mathit{\text{wr}}}_{i}}=\sum _{t=0}^{9}{\mathit{\text{wr}}}_{i,t}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}\phantom{\rule{1em}{0ex}}(\ast )$ | |
i = 1…18,t = 0…9 | |
UH rate | urban hukou rate$i,t\phantom{\rule{1em}{0ex}}=\phantom{\rule{1em}{0ex}}\frac{{\text{urban hukou population}}_{i,t}}{{\text{city population}}_{i,t}}$ |
$\overline{{\mathit{\text{urban}}\phantom{\rule{1em}{0ex}}\mathit{\text{hukou}}\phantom{\rule{1em}{0ex}}\mathit{\text{rate}}}_{i}}=\sum _{t=0}^{9}\phantom{\rule{1em}{0ex}}{\text{urban hukou rate}}_{i,t}\phantom{\rule{1em}{0ex}}(\ast )$ | |
i = 1…18,t = 0…9 | |
Lmar-rate | Late marriage rate _{ i,t } is the ratio of the number of |
females who were at least 23 years old at | |
marriage to the total number of first marriages. | |
K/P | (K/P)$i,t=\frac{{\text{capital stock}}_{i,t}}{{\text{city population}}_{i,t}};$ |
capital stock _{ i,t }=K _{ i,t }=(1−δ)K _{ i,t−1}+F D I _{ i,t }, | |
where δ is depreciation rate. | |
$\delta =\frac{\mathit{\text{original}}{K}_{i,t=1992}-\mathit{\text{net}}{K}_{i,t=2}}{\mathit{\text{original}}{K}_{i,t=2}}$ | |
i = 1…18,t = 0…9 | |
SFP | number of single female _{ i,t }= |
number of female _{ i,t }−number of married and child | |
bearing age _{ i,t }. | |
where, child bearing age is between 20–49 years old | |
i = 1…18,t = 0…9 |