Skip to main content

Table 5 Native outmigration and recent immigration

From: Immigration and wages: new evidence from the African American Great Migration

   OLS IV
   1940 1950 1940 1950
   Black White Black White Black White Black White
Overall          
Specification          
(1) Prop. Southern −0.428 0.343*** −0.784 0.423 −0.0468 1.101*** −0.219 0.513
   (0.351) (0.102) (1.149) (0.315) (0.267) (0.346) (0.277) (0.757)
  Observations 2018 97,043 954 38,073 1996 94,370 940 36,456
  Clusters 27 92 21 97 26 79 20 79
(2) Prop. Southern −0.580*** −0.0283 0.411 −0.304 0.223 0.725*** 0.295 1.356
   (0.187) (0.0223) (1.091) (0.313) (0.609) (0.215) (2.028) (0.876)
  Observations 2018 94,512 954 34,942 1996 92,054 940 34,055
  Clusters 27 86 21 70 26 74 20 61
By race          
Specification          
(1) Prop. Southern black 0.250 −1.165 −2.655** −0.679 1.506 2.440 1.854 −2.992
   (1.119) (0.956) (1.248) (0.958) (3.607) (2.420) (5.019) (3.348)
  Prop. Southern white −0.472 0.728*** 0.826 1.051*** −0.593 0.794*** −1.167 2.340***
   (0.404) (0.206) (0.592) (0.369) (1.011) (0.295) (1.993) (0.853)
  Observations 2018 97,043 954 38,073 1996 94,370 940 36,456
  Clusters 27 92 21 97 26 79 20 79
(2) Prop. Southern black 0.349 −0.589 −2.735 −0.290 7.386 0.558 2.627 −0.157
   (2.669) (0.586) (2.155) (1.290) (6.773) (1.532) (4.570) (3.247)
  Prop. Southern white −0.603* 0.492*** −0.319 0.527 −1.697 0.769** −1.193 2.125***
   (0.307) (0.152) (1.287) (0.438) (1.128) (0.361) (1.562) (0.723)
  Observations 2018 94,512 954 34,942 1996 92,054 940 34,055
  Clusters 27 86 21 70 26 74 20 61
  1. Notes: All specifications include indicators for age and education; specification (2) includes white and black metro-level percent employed in manufacturing, percent farming, and average years of education. Regressions weighted by the number of observations used to calculate metro-level covariates. Standard errors, clustered by metro area, reported in parentheses
  2. “***”, “**”, and “*” denote significance at the 1, 5, and 10 % levels, respectively